
How Neshua Created W-bot (aka wot)

● Creating a Discord Application
● APIs

○ Weather
○ Gifs

● Python
○ Getting information from the weather api
○ Getting information from the gif api
○ Creating the bot

● Future Improvements
● Watch the Working Bot
● Add the bot to your server

○ Bot Name: W-bot
○ Client ID: 1129861334993993789
○ Invite link again:

https://discord.com/api/oauth2/authorize?client_id=112986
1334993993789&permissions=534723951680&scope=bot%20
applications.commands

https://youtu.be/YchMqzGJA7s
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=applications.commands%20bot
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applications.commands
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applications.commands
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applications.commands

Creating a Discord Application
The first step I took in creating a discord bot was to create a discord application. To do

that, I simple went to the discord developer portal which looks like this:

Here you can see my two and only (for now🤞) discord bots. I clicked the new
applications button on the top right which prompted this screen:

Here, I named my bot, agreed to
discord’s terms of service and my
application was created!🎉
This then redirected me to a General
Information page for the application I just
created.

https://discord.com/developers/applications

This is what W-bot’s general information’s page looks like. Here, I customized my
app’s icon and description to help users better understand what my bot does. In my
case, w-bot delivers weather information for a given zip code. From the menu on the left
hand side of the screen, I clicked on OAuth2 → URL Generator and created an invite
link so that others could add W-bot into their servers.

I specified my scopes…

And my bot permissions:

W-bot was in my server but it was
offline!😰

That’s because I hadn’t coded anything yet. Before starting to code, make sure to
go back to your application’s site and have the appropriate Privilege Gateway Intents
toggled (I learned that the tough way🥲). Now let’s look at the api’s I used to create this
bot.

Weather API
The weather api I used for w-bot is called Open-Meteo. This api does not require an API

key and has a lot of cool features. The ones I was interested in using were the current weather
and forecast options.

Gif API
The gif api I used for w-bot was Giphy. This one requires an account with giphy and an

api key but it is otherwise free to use.

Python
The first step in coding this bot was downloading the discord.py library to my device. I

ran the following command in my console:

pip install discord.py

There are 6 python files that help create w-bot:
● Main.py ← Where the bot runs from
● Wbot.py ← This is where all the bot commands live
● Weather_gif.py ← Helper class that makes the giphy api calls to get the gif url
● weatherApi.py ← Helper class that makes open-meteo calls to get weather data
● Wmo_codes.py ← a dictionary with all World Meteorological Organization weather codes

and their description

Weather API Class
This particular weather api uses longitude and latitude numbers to present weather data.

We want our bot users to be presented weather data from a particular zip code which is easier
to make sense of as opposed to longitude and latitude numbers (I personally don’t even know
how those work😬). So my first concern was transforming a given zip code into latitude and
longitude numbers. Luckily, python has this really neat library, pgeocode, that allows us to get
geolocation data from a zip code. This data includes latitude and longitude!😻

After installing and importing pgeocode to my class, I was able to get started with
creating the helper functions for obtaining weather data. Here are the functions:

https://open-meteo.com/
https://developers.giphy.com/
https://pgeocode.readthedocs.io/en/latest/overview.html

This get_curr_weather(zipcode)function takes in a zipcode and returns the
current weather information from the open-meteo API

import pgeocode

import requests

def get_curr_weather(zipcode):

nomi = pgeocode.Nominatim('us')

gps_info = nomi.query_postal_code(zipcode)

lat = gps_info['latitude']

lon = gps_info['longitude']

w_response =

requests.get(f'https://api.open-meteo.com/v1/forecast?latitude={lat}&

longitude={lon}&hourly'

'=temperature_2m¤t_weather=true&timezone=America%2FChicago')

weather_info = w_response.json()['current_weather']

return weather_info

This function allows us to extract the following current weather information:
"current_weather": {

"time": "2022-01-01T15:00"

"temperature": 2.4, "weathercode": 3,

"windspeed": 11.9, "winddirection": 95.0,

},

We could access specific attributes in the weather data like this:

get_curr_weather(zipcode)['temperature']

However for the sake of simplicity, and just personal preference, I created separate functions to
access these specific data points.
Here’s an example of a function for getting the current temperature from a zip code:

def get_curr_temp(zipcode):

weather_info = get_curr_weather(zipcode)

curr_temp = weather_info['temperature']

return curr_temp

When looking at the current_weather data, I noticed an attribute that I couldn’t quite
recognize, “weathercode”, which open-meteo’s website describes as “weather condition as a

numeric code.” Each numeric code is associated with a weather description. I figured this would
be helpful in the future when I try to look up gifs that match the reported weather so it would be
wise to keep track of them. I made a dictionary for every weather code:

I also made a function that returns the current weather code for a specific zip code:

def get_curr_weather_code(zipcode):

weather_info = get_curr_weather(zipcode)

curr_weather_code = weather_info['weathercode']

return curr_weather_code

In total, there are six functions that make up the weatherApi.py class:
● get_curr_weather(zipcode): extracts specific current weather information from

zip code
● get_curr_temp(zipcode): returns the temperature in C from zip code
● get_weather_on(zipcode, date_time): returns weather data from zip code on

specified date and time
● get_location_name(zipcode): returns location name from zip code
● get_curr_weather_code(zipcode): returns current weather code from zip code
● get_daily_weather_code(zip,day): returns weather code for specific date and

zip code

Gif API Class
The API I used to get gifs from a given weather code was the Giphy API. This api

required me to make a developer account and an application. Here you can see the W-bot app

https://developers.giphy.com/

and the API key:

Their API explorer page has a very easy to use GUI to create a request URL:

The endpoint I am interested in is “Search”. I wrote down a simple query “cloudy rainy day” to
find the gifs of a cloudy rainy day, and the default gif limit is 25. After clicking the send request

https://developers.giphy.com/explorer/

button I get something that looks like this:

Out of all of this information, the image URL is what I need:

The API response gives us 25 gifs that match our “cloudy rainy sky” query. However,
w-bot is not really interested in showing users all 25 of these gifs😅. Because of this, when I
created the helper function that returns a gif URL from the api request, I made it so it randomly
picked 1 out of the 25 available gifs. This is what the weather_gif.py class and get_gif()
function looks like:

import random

from weatherApi import *

def get_gif(query):

gif_response = requests.get(

f"https://api.giphy.com/v1/gifs/search?api_key=1RvZoTwJJX2H6kz6JYA0um

9x14rp8vWW&q={query}&limit=25&offset=0"

f"&rating=g&lang=en&bundle=messaging_non_clips")

gif_info = gif_response.json()

random_gif = random.choice(gif_info['data'])

return random_gif['images']['original']['url']

W-bot Class
So far, we have a helper class to handle our weather API calls✅and a helper class to

handle our gif API call✅, we are missing an actual bot class that will bring W-bot to life! (bit-ly
speaking🤖=🧠🙅).

The first 10 lines of our wbot.py class look like this:

import discord

from wmo_codes import *

from discord import app_commands

from discord.ext import commands

from weather_gif import *

intents = discord.Intents.all()

bot = commands.Bot(command_prefix="!", intents=intents)

temp = "c"

location = 61073

I imported all the necessary libraries and classes I needed to create my slash
commands, initiated my discord bot and set up my global default variables for temperature unit
and location.

Next I set up my on_ready() bot event:

@bot.event

async def on_ready():

print("W-bot is ready!")

try:

synced = await bot.tree.sync()

print(f"Synced {len(synced)} command(s)")

except Exception as e:

print(e)

After this bot event, I created the /set_location and /set_temp_unit commands
which update the global location and global temp variables respectively. Now, when the user
calls these commands they will be able to set the temperature unit to either celsius or fahrenheit
and specify their preferred location’s zip code.

This is the code for these commands:

@bot.tree.command(name="set_temp_unit", description="Set your

preferred temperature unit")

@app_commands.describe(temp_unit="Type: 'c' or 'f'")

async def set_temp_unit(interaction: discord.Interaction, temp_unit:

str):

global temp

temp = temp_unit.lower()

await interaction.response.send_message(f"Temperature unit set to

{temp}")

@bot.tree.command(name="set_location", description="Set where you'd

like to get weather information from")

@app_commands.describe(zipcode="Enter the zipcode of your desired

location")

async def set_location(interaction: discord.Interaction, zipcode:

int):

global location

location = zipcode

await interaction.response.send_message(f"Location set to " +

get_location_name(zipcode))

This bot is meant to help friends who’d like to pick the perfect weather day to meet up,
hence, I created the command /get_temp_on that allows users to look up the temperature for
a specific date and time. This command takes in a date and time in the YYYY-MM-DDT00:00
format. It also embeds a gif for the appropriate weather code.

@bot.tree.command(name="get_temp_on", description="Get the

temperature on a specific day and time(7 days from today)")

@app_commands.describe(date_time="Time and Date YYYY-MM-DDT00:00

format ex.2023-07-18T15:00")

async def get_temp_on(interaction: discord.Interaction, date_time:

str):

global temp

global location

date = date_time[:10]

time = date_time[11:]

embed = discord.Embed()

embed.set_image(url=get_gif(wmo_weather_codes[get_daily_weather_code(

location, date)]))

if temp == "f":

await interaction.response.send_message(f"The temperature in "

+ get_location_name(location) + " will be: \n" +

str((get_weather_on(location, date_time)*9/5)+32) + f" F on {date} at

{time} "

, embed=embed)

else:

await interaction.response.send_message(f"The temperature in "

+ get_location_name(location) + "will be: \n" +

str(get_weather_on(location, date_time)) + f" F on {date} at {time}

",

embed=embed)

This part of the code:
embed.set_image(url=get_gif(wmo_weather_codes[get_daily_weather_code(l

ocation, date)]))
Uses the get_gif() function I mentioned in the Gif API Class section of this doc. The query
input is the weather code specific to that location and date. Again, this code translates to a

specific weather description which we can access through the wmo_weather_codes
dictionary mentioned in the Weather API Class section of this doc.

Next, is the /weather_info command. This command gives the user the current
temperature, wind speed and wind direction. Here is the code for that command:

@bot.tree.command(name="weather_info", description="Get an overview of your

location's current weather")

async def weather_info(interaction: discord.Interaction):

global location

global temp

if temp == "f":

await interaction.response.send_message(f"The current weather report

for " + get_location_name(location) +

" is: \n

----------------------- \n Temperature = "

+ str(

(get_curr_weather(location)['temperature'] * 9 / 5) + 32) + "

F\n -----------------------\n Wind Speed = " +

str(get_curr_weather(location)['windspeed']) +

" \n -----------------------

\n Wind Direction = " + str(

get_curr_weather(location)['winddirection']) + "\n

-----------------------")

else:

await interaction.response.send_message(f"The current weather report

for " + get_location_name(location) +

" is: \n

----------------------- \n Temperature = "

+

str(get_curr_weather(location)['temperature']) +

" C\n

----------------------- \n Wind Speed = " +

str(get_curr_weather(location)['windspeed']) +

" \n -----------------------

\n Wind Direction = " + str(

get_curr_weather(location)['winddirection']) + "\n

----------------------- ")

Finally, we have the /get_temp_now command which gives users the current
temperature in their preferred location and embeds a gif for the appropriate weather code:

@bot.tree.command(name="get_temp_now", description="Get your

location's current temperature")

async def get_temp_now(interaction: discord.Interaction):

global location

global temp

embed = discord.Embed()

embed.set_image(url=get_gif(wmo_weather_codes[get_curr_weather_code(l

ocation)]))

if temp == "f":

await interaction.response.send_message(

f"The current temperature in " +

get_location_name(location) + " is: \n" +

str((get_curr_temp(location) * 9 / 5) + 32) + f" F \n "

+ str(wmo_weather_codes[get_curr_weather_code(location)]),

embed=embed)

else:

await interaction.response.send_message(

f"The current temperature in " +

get_location_name(location) + " is: \n" +

str(get_curr_temp(location)) + f" C \n" +

str(wmo_weather_codes[get_curr_weather_code(location)]),

embed=embed)

Future improvements
Overall, I’d say W-bot is pretty cool😎(😝). It allows users to:

● Swap between celsius and fahrenheit with a quick command
● Get current weather information of desired zip code(windspeed, wind direction,

temperature)
● Set the preferred location through a zip code with a quick command
● Get weather information of desired date and time 7 days ahead
● Get a relevant GIF that matches the reported weather

If I were to make w-bot even cooler, I’d do the following:
● Zip codes: Currently, w-bot does not check for invalid zip codes. In the future, I’d like to

implement a check that notifies users if their zip code was not valid and prevents the bot
from crashing from non-existent zip codes.

● Gifs: Describing the current weather through weather codes may not be the most
efficient way to look up gifs. Sometimes the recommended gifs do not match the weather
appropriately. Using a weather api with more detailed weather descriptions could
improve gif search accuracy.

● Date and Time: Currently, w-bot allows users to look up the weather 7 days in advance
which is great for making plans! However, the date format for looking up the weather can
be confusing and not intuitive. Introducing date conversion python libraries to my code
could make the date inputs easier for users.

● Personalization: I’d love to be able to customize the font sizes and colors of w-bot in the
future. As of now, I don’t know how to “beautify” the bot command responses. I may
need to do some more research on discord’s developer page!

● Other cool things: It would be nice to show users a table of the weather for the next
seven days instead of one specific day at a time. With this specific API, I believe this
functionality would require a lot of string manipulation code which is time consuming and
outside the 4hr scope for this challenge.

