How Neshua Created W-bot (aka wot)

e Creating a Discord Application

APIs
o Weather
o Gifs
Python
o Getting information from the weather api
o Getting information from the gif api
o Creating the bot

e Future Improvements
e Watch the Working Bot
e Add the bot to your server

o Bot Name: W-bot

o Client ID: 1129861334993993789

o Invite link again:
httos://discord.com/api/oauth2/authorize?client_id=112986
1334993993789&permissions=534723951680&scope=bot%20

applications.commands

https://youtu.be/YchMqzGJA7s
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=applications.commands%20bot
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applications.commands
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applications.commands
https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applications.commands

Creating a Discord Application

The first step | took in creating a discord bot was to create a discord application. To do
that, | simple went to the_discord developer portal which looks like this:

X DEVELOPER PORTAL

Applications New Application @

Applications Find the perfect feature set for your game in our Game SDK, and sign up for Server Commerce to start selling directly
in your server. Get started by creating a new application. We can't wait to see what you make!

Teams

Documentation R
SortBy: Date Created v 222 Small == Large

My Applications

Here you can see my two and only (for now «) discord bots. | clicked the new
applications button on the top right which prompted this screen:

CREATE AN APPLICATION Here, | named my bot, agreed to
discord’s terms of service and my
application was created! €

Are you a game dev? We may already have your app in
our database. Reach out to our Dev Support for more

info and to claim your game! This then redirected me to a General
NAME Information page for the application | just

Webot20 created.

By clicking Create, you agree to the Discord

and

Cancel Create

https://discord.com/developers/applications

SELECTED APP
@ whot
SETTINGS

General Information
OAuth2

Bot

Rich Presence

\& App Testers

General Information

What should we call your creation? What amazing things does it do?

us here!

By clicking Create, you agree to the Discord

APP ICON

NAME

W-bot

DESCRIPTION (MAXIMUM 400 CHARACTERS)

Your description will appear in the About Me section of your bot's profile.

A bot that can deliver weather information for a given ZIP code.

TAGS (MAXIMUM 5)

&

at icon should represent it across Discord? Tell

Add up to 5 tags to describe the content and functionality of your application.

APPLICATION ID

1129861334993993789
Copy

PUBLIC KEY

0ee574fdc3d0071eb0063b9f2e9e1d45285a815912ea541b7bfblafae82c53ae

This is what W-bot’s general information’s page looks like. Here, | customized my
app’s icon and description to help users better understand what my bot does. In my
case, w-bot delivers weather information for a given zip code. From the menu on the left
hand side of the screen, | clicked on OAuth2 — URL Generator and created an invite
link so that others could add W-bot into their servers.

< Back to
SELECTED APP
@ wbot
SETTINGS

A General Information
&, OAuth2

Ly General

Ly URL Generator
* Bot

B Rich Presence

\& App Testers

| specified my scopes...

OAuth2 URL Generator

O

Generate an invite link for your application by picking the scopes and permissions it needs to function. Then, share

the URL to others!

SCOPES

identify

guilds

gdm.join

rpc.voice.read
rpc.video.write
rpc.activities.write
messages.read
applications.commands
activities.read

voice

email

guilds.join

rpc

rpc.voice.write
rpc.screenshare.read

bot
applications.builds.upload
applications.store.update
activities.write

dm_channels.read

applications.commands.permissions.update

connections
guilds.members.read
rpc.notifications.read
rpc.video.read
rpc.screenshare.write
webhook.incoming
applications.builds.read
applications.entitlements
relationships.read

role_connections.write

And my bot permissions:

SELECTED APP
. W-bot

SETTINGS

M General Information

&, OAuth2

Administrator
View Audit Log
Manage Server
Manage Roles
Manage Channels
Kick Members
Ban Members

Create Instant Invite

Send Messages

Create Public Threads
Create Private Threads
Send Messages in Threads
Send TTS Messages
Manage Messages
Manage Threads

Embed Links

Connect

Speak

Video

Mute Members
Deafen Members
Move Members
Use Voice Activity

Priority Speaker

Ly General
Change Nickname Attach Files Request To Speak

L> URL Generator Manage Nicknames Read Message History Use Embedded Activities

* Bot Manage Expressions Mention Everyone Use Soundboard
Create Expressions Use External Emojis Use External Sounds
B Rich Presence
Manage Webhooks Use External Stickers
\2 App Testers Read Messages/View Channels Add Reactions
Manage Events Use Slash Commands
Create Events
Moderate Members

View Server Insights

View Creator Monetization Insights

GENERATED URL

https://discord.com/api/oauth2/authorize?client_id=1129861334993993789&permissions=534723951680&scope=bot%20applicati... Copy

— Welcome W-bot. Say hi! Today at 3:51PM

OFFLINE — 1

W-bot was in my server but it was
offline! &

That’s because | hadn’t coded anything yet. Before starting to code, make sure to
go back to your application’s site and have the appropriate Privilege Gateway Intents
toggled (I learned that the tough way). Now let’s look at the api’s | used to create this
bot.

Weather API

The weather api | used for w-bot is called Open-Meteo. This api does not require an API
key and has a lot of cool features. The ones | was interested in using were the current weather
and forecast options.

Gif API

The gif api | used for w-bot was Giphy. This one requires an account with giphy and an
api key but it is otherwise free to use.

Python

The first step in coding this bot was downloading the discord.py library to my device. |
ran the following command in my console:

pip install discord.py

There are 6 python files that help create w-bot:

Main.py < Where the bot runs from

Whbot.py < This is where all the bot commands live

Weather_gif.py < Helper class that makes the giphy api calls to get the gif url
weatherApi.py < Helper class that makes open-meteo calls to get weather data
Wmo_codes.py « a dictionary with all World Meteorological Organization weather codes
and their description

Weather API Class

This particular weather api uses longitude and latitude numbers to present weather data.
We want our bot users to be presented weather data from a particular zip code which is easier
to make sense of as opposed to longitude and latitude numbers (I personally don’t even know
how those work ©*)). So my first concern was transforming a given zip code into latitude and
longitude numbers. Luckily, python has this really neat library, pgeocode, that allows us to get
geolocation data from a zip code. This data includes latitude and longitude! #*

After installing and importing pgeocode to my class, | was able to get started with
creating the helper functions for obtaining weather data. Here are the functions:

https://open-meteo.com/
https://developers.giphy.com/
https://pgeocode.readthedocs.io/en/latest/overview.html

This get curr weather (zipcode) function takes in a zipcode and returns the
current weather information from the open-meteo API

import pgeocode
import requests

def get_curr_weather(zipcode):
nomi = pgeocode.Nominatim('us")
gps_info = nomi.query_postal code(zipcode)
lat = gps_info['latitude’]

lon = gps_info['longitude’]

W_response =
requests.get(f'https://api.open-meteo.com/vl/forecast?latitude={lat}&
longitude={lon}&hourly"

"=temperature_2m¤t_weather=true&timezone=America%2FChicago')
weather_info = w_response.json()['current_weather']
return weather_info

This function allows us to extract the following current weather information:

"current_weather": {
"time": "2022-01-01T15:00"
"temperature": 2.4, "weathercode": 3,
"windspeed": 11.9, "winddirection": 95.0,

We could access specific attributes in the weather data like this:

get _curr_weather(zipcode)['temperature’]

However for the sake of simplicity, and just personal preference, | created separate functions to
access these specific data points.
Here’s an example of a function for getting the current temperature from a zip code:

def get_curr_temp(zipcode):
weather_info = get curr_weather(zipcode)

curr_temp = weather_info['temperature’]
return curr_temp

When looking at the current weather data, | noticed an attribute that | couldn’t quite
recognize, “weathercode”, which open-meteo’s website describes as “weather condition as a

numeric code.” Each numeric code is associated with a weather description. | figured this would
be helpful in the future when | try to look up gifs that match the reported weather so it would be
wise to keep track of them. | made a dictionary for every weather code:

wmo_weather_codes = {

| also made a function that returns the current weather code for a specific zip code:

def get _curr_weather_code(zipcode):
weather_info = get curr_weather(zipcode)

curr_weather_ code = weather_info['weathercode’]
return curr_weather_code

In total, there are six functions that make up the weatherApi.py class:

e get curr weather (zipcode): extracts specific current weather information from
Zip code
get curr temp (zipcode) : returns the temperature in C from zip code

e get weather on(zipcode, date time): returns weather data from zip code on
specified date and time

e get location name (zipcode) : returns location name from zip code

e get curr weather code(zipcode) : returns current weather code from zip code

e get daily weather code(zip,day): returns weather code for specific date and
Zip code

Gif API Class

The API | used to get gifs from a given weather code was the Giphy API. This api
required me to make a developer account and an application. Here you can see the W-bot app

https://developers.giphy.com/

and the API key:

fl GIPHY DeveLopers v Docs Dashboard FAQs API Explorer Blog Create an App neshua

Dashboard

Welcome to your GIPHY Developer Dashboard. Get started by creating an app, where you will be assigned a beta APl key. All newly created beta keys are
subject to rate limits and are best used in a development environment.

Once you are ready to use your app in production, please verify your GIPHY integration, if needed, and upgrade your key by clicking on ‘Upgrade to
Production’.

Your Apps

W-bot Edit

API Key

TRVZoTw)JX2H6kz6)YAOUmM9x14rp8VWW

--

Ready to build another app already?
Click anywhere to get started!

Their AP| explorer page has a very easy to use GUI to create a request URL.:

API Explorer

Take our API for a spin by inputting some sample queries and view live responses!

Request Parameters
Choose an app / API Key q (2]
W-bot: 1RvZoTw)J)X2H6kz6)YAOum9x14rp8vWW v cloudy rainy sky
Choose a resource limit @
GIPHY Public API v 25
Choose an endpoint offset @
Search 4 0
Request URL rating @
https://api.giphy.com/v1/gifs/search?api_key=1RvZoTwJJX2H6kz6)YAOum9x14rp g v
8VWW&q=cloudy+rainy+sky&limit=25&offset=0&rating=g&lang=en&bundle=messa
ging_non_clips lang @
en v
Send Request
bundle @
messaging_non_clips v

The endpoint | am interested in is “Search”. | wrote down a simple query “cloudy rainy day” to
find the gifs of a cloudy rainy day, and the default gif limit is 25. After clicking the send request

https://developers.giphy.com/explorer/

button | get something that looks like this:

Yr'data" : [B
v B
"eype" : "gif"

"id" : "30EdvbelTmMX0Q9VDO"

"url" : "htt

"slug" : "clc
"bitly gif_url" : "http://gph.is/lhyoAFK

"bitly url" : "http://g;

"embed_url" : "https://giphy.com/embed/30EdvbelTmMX0Q9VDO"
"username" : "timpattinson"

"source" : !

"title" : "Brit Summe

"rating" : "g

"content_url" : "

"source_tld" : ""

"source_post_url" : "'

"is_sticker" : 0

"import_datetime" : "201%

"trending_datetime" : "2017-06-17 17:47:18
¥ "images" : { B
¥ 'original" : {
"height" : "480
"width" : "48(
"size" : "1232346
"url" :

"https://medial.giphy.com/media/3c

joesep=vl_gifs_search&rid=g

"mp4 size" : "179217

Out of all of this information, the image URL is what | need:

Y "images" : {)

¥ "original" : { &
"height" : "480"
"width" : "480"
"size" : "1232346"

DEil” g
"https://medial.giphy.com/media/30EdvbelTmMX0Q9VDO/giphy.gif?cid=3df5de8d0emz9174kpzlk4oear8efbkd7i0hlr8
zv7yOcdoe&ep=vl gifs search&rid=giphy.gif&ct=g"

The API response gives us 25 gifs that match our “cloudy rainy sky” query. However,
w-bot is not really interested in showing users all 25 of these gifs &'. Because of this, when |
created the helper function that returns a gif URL from the api request, | made it so it randomly
picked 1 out of the 25 available gifs. This is what the weather gif.py classand get gif ()
function looks like:

import random
from weatherApi import *

def get_gif(query):
gif response = requests.get(

f"https://api.giphy.com/vl/gifs/search?api_key=1RvZoTwI]IX2H6kz6JYAQuUm

9x14rp8viW&qg={query}&limit=25&offset=0"
f"&rating=g&lang=en&bundle=messaging non_clips")
gif info = gif response.json()

random_gif = random.choice(gif info['data'])
return random_gif['images']['original']['url']

W-bot Class

So far, we have a helper class to handle our weather API calls [74and a helper class to
handle our gif API call [4, we are missing an actual bot class that will bring W-bot to life! (bit-ly

The first 10 lines of our wbot.py class look like this:

import discord

from wmo_codes import *

from discord import app_commands
from discord.ext import commands
from weather_gif import *

intents = discord.Intents.all()
bot = commands.Bot(command_prefix=

temp = "c
location = 61073

, intents=intents)

| imported all the necessary libraries and classes | needed to create my slash
commands, initiated my discord bot and set up my global default variables for temperature unit
and location.

Next | set up my on_ready() bot event:

@bot.event

async def on_ready():

print("W-bot is ready!")
try:
synced = await bot.tree.sync()

print(f"Synced {len(synced)} command(s)")
except Exception as e:
print(e)

After this bot event, | created the /set locationand /set temp unit commands
which update the global location and global temp variables respectively. Now, when the user
calls these commands they will be able to set the temperature unit to either celsius or fahrenheit
and specify their preferred location’s zip code.

This is the code for these commands:

@bot.tree.command(name="set temp unit", description="Set your
preferred temperature unit")
@app_commands.describe(temp_unit="Type: 'c' or 'f'")
async def set_temp_unit(interaction: discord.Interaction, temp_unit:
str):

global temp

temp = temp_unit.lower()

await interaction.response.send_message(f"Temperature unit set to
{temp}")

@bot.tree.command(name="set_ location", description="Set where you'd
like to get weather information from")
@app_commands.describe(zipcode="Enter the zipcode of your desired
location")
async def set location(interaction: discord.Interaction, zipcode:
int):

global location

location = zipcode

await interaction.response.send_message(f"Location set to " +
get_location_name(zipcode))

This bot is meant to help friends who’d like to pick the perfect weather day to meet up,
hence, | created the command /get temp_ on that allows users to look up the temperature for
a specific date and time. This command takes in a date and time in the YYYY-MM-DDT00:00
format. It also embeds a gif for the appropriate weather code.

@bot.tree.command(name="get_ temp on", description="Get the
temperature on a specific day and time(7 days from today)")
@app_commands.describe(date_time="Time and Date YYYY-MM-DDTO0:00
format ex.2023-07-18T15:00")
async def get_temp_on(interaction: discord.Interaction, date_time:
str):

global temp

global location

date = date_time[:10]

time = date_time[11:]

embed = discord.Embed()

embed.set_image(url=get gif(wmo_weather_ codes[get daily weather_code(
location, date)]))
if temp == "f":
await interaction.response.send _message(f"The temperature in
+ get location_name(location) + " will be: \n" +

str((get_weather_on(location, date time)*9/5)+32) + f" F on {date} at
{time} "
, embed=embed)
else:
await interaction.response.send_message(f"The temperature in
+ get_location_name(location) + "will be: \n" +

str(get_weather_on(location, date_time)) + f" F on {date} at {time}

1]
J

embed=embed)

This part of the code:

embed.set image(url=get gif(wmo weather codes[get daily weather code(l

ocation, date)]))

Uses the get gif () function | mentioned in the Gif AP| Class section of this doc. The query

input is the weather code specific to that location and date. Again, this code translates to a

specific weather description which we can access through the wmo weather codes
dictionary mentioned in the_Weather API Class section of this doc.

Next, is the /weather info command. This command gives the user the current
temperature, wind speed and wind direction. Here is the code for that command:

@bot.tree.command(name="weather_info", description="Get an overview of your
location's current weather")
async def weather_info(interaction: discord.Interaction):
global location
global temp
if temp == "f":
await interaction.response.send _message(f"The current weather report
" + get_location_name(location) +
is: \n
\n Temperature =
+ str(
(get_curr_weather(location)['temperature'] * 9 / 5) + 32) +
\n Wind Speed = " +

str(get_curr_weather(location)['windspeed']) +

\n Wind Direction = " + str(
get _curr_weather(location)['winddirection']) + "\n

await interaction.response.send_message(f"The current weather report
+ get_location_name(location) +

is: \n

\n Temperature =
str(get_curr_weather(location)['temperature'])

\n Wind Speed = " +
str(get_curr_weather(location)['windspeed']) +

\n Wind Direction = " + str(
get curr_weather(location)['winddirection']) + "\n

Finally, we have the /get temp now command which gives users the current
temperature in their preferred location and embeds a gif for the appropriate weather code:

@bot.tree.command(name="get temp now", description="Get your
location's current temperature")
async def get temp now(interaction: discord.Interaction):
global location
global temp
embed = discord.Embed()

embed.set_image(url=get gif(wmo_weather_codes[get curr_weather_code(1l
ocation)]))
if temp == "f":
await interaction.response.send_message(

f"The current temperature in " +

get_location_name(location) + is: \n" +
str((get_curr_temp(location) * 9 / 5) + 32) + f" F \n "
+ str(wmo_weather_codes[get curr_weather_code(location)]),
embed=embed)

else:
await interaction.response.send_message(

f"The current temperature in " +
get location_name(location) + " is: \n" +
str(get_curr_temp(location)) + f" C \n" +
str(wmo_weather_codes[get_curr_weather_code(location)]),

embed=embed)

Future improvements

Overall, I'd say W-bot is pretty cool ®=(%5). It allows users to:
e Swap between celsius and fahrenheit with a quick command
e Get current weather information of desired zip code(windspeed, wind direction,
temperature)
e Set the preferred location through a zip code with a quick command
e Get weather information of desired date and time 7 days ahead
e Get a relevant GIF that matches the reported weather
If | were to make w-bot even cooler, I'd do the following:
e Zip codes: Currently, w-bot does not check for invalid zip codes. In the future, I'd like to
implement a check that notifies users if their zip code was not valid and prevents the bot
from crashing from non-existent zip codes.

Gifs: Describing the current weather through weather codes may not be the most
efficient way to look up gifs. Sometimes the recommended gifs do not match the weather
appropriately. Using a weather api with more detailed weather descriptions could
improve gif search accuracy.

Date and Time: Currently, w-bot allows users to look up the weather 7 days in advance
which is great for making plans! However, the date format for looking up the weather can
be confusing and not intuitive. Introducing date conversion python libraries to my code
could make the date inputs easier for users.

Personalization: I'd love to be able to customize the font sizes and colors of w-bot in the
future. As of now, | don’t know how to “beautify” the bot command responses. | may
need to do some more research on discord’s developer page!

Other cool things: It would be nice to show users a table of the weather for the next
seven days instead of one specific day at a time. With this specific API, | believe this
functionality would require a lot of string manipulation code which is time consuming and
outside the 4hr scope for this challenge.

